
Programming the Web
with Visual Basic .NET

LYNN TORKELSON, CONSTANCE PETERSEN, AND ZAC TORKELSON

0279front.fm Page i Monday, June 17, 2002 9:32 PM

Programming the Web with Visual Basic .NET
Copyright © 2002 by SoftMedia Artisans, Inc.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and
the publisher.

ISBN (pbk): 1-59059-027-9

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Scott Stabbert

Editorial Directors: Dan Appleman, Peter Blackburn, Gary Cornell, Jason Gilmore, Simon Hayes,
Karen Watterson, John Zukowski

Managing Editor: Grace Wong

Project Manager and Development Editor: Tracy Brown Collins

Copy Editor: Tom Gillen of Gillen Editorial, Inc.

Production Editor: Kari Brooks

Compositor: Susan Glinert

Artist: Cara Brunk

Indexer: Carol Burbo

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Marketing Manager: Stephanie Rodriguez

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.

Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 9th Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax: 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads
section. You will need to answer questions pertaining to this book in order to successfully download
the code.

0279front.fm Page ii Monday, June 17, 2002 9:32 PM

767

CHAPTER 15

Creating a Web Site

THE EARLIER CHAPTERS in this book presented a wealth of ASP.NET features and
tools that you can use to create effective Web sites. In this final chapter, we show
how to put many of those features and tools to use to create a professional-quality
Web site.

In your capacity as a Visual Basic .NET Web programmer, you may well find
yourself collaborating with a professional Web designer. (We’re talking about a
person here, not a software program!) In all likelihood, that designer will not be using
Visual Studio .NET. Don’t worry about it. In this chapter, we explain how to take the
HTML design created using a different tool—in this case Microsoft FrontPage, but
it doesn’t really matter—and implement the design in Visual Studio .NET.

Here we also address the factoring of a Web application into controls and other
useful classes. As with all Visual Basic .NET programming, doing a good job of
factoring improves the reliability and maintainability of your code. By encapsu-
lating all access to a database within a particular class, for example, you eliminate
redundant code and make it possible to incorporate database changes and
improvements reliably and efficiently. To enhance scalability, the database classes
in this chapter make extensive use of stored procedures and data readers. As we
demonstrate, Visual Studio .NET makes it easy to create and use stored procedures
with data readers.

In earlier chapters, we focused on securing sensitive Web information through
authentication and authorization provided by IIS and ASP.NET. But your Web site
can make use of a visitor’s identity for other purposes as well. In this chapter, we
show how to use persistent cookies to personalize a Web site.

If you create a public Web site, you’ll want to make sure that potential visitors
can find it. Most surfers use major search engines to locate Web sites of interest to
them, and so we conclude this chapter by showing how to make your Web site
accessible to search engines.

Working with a Professional Designer

To make our discussions concrete, we present a case study in this chapter that
builds an ASP.NET Web application from a design created in Microsoft FrontPage.
The VB Snippets Web site resembles the Web application we used to illustrate the
material in the last two chapters, but it has a more professional appearance and

0279c15.fm Page 767 Thursday, June 13, 2002 5:20 AM

Chapter 15

768

includes more usability features. As a matter of fact, the earlier versions of this Web
application served as a prototype for the case study.

The VB Snippets case study contains many Web pages and a lot of code. In this
chapter, we present some of the code, but only to illustrate points not made in
earlier chapters. We encourage you to download the code and experiment with it
yourself to see how all of the pages in the Web site work together. The code includes
scripts to set up the databases used by VB Snippets, plus another Web application that
we used to add and edit the code snippets displayed by the case study. Figure 15-1
shows a collage of the Web pages that we used to maintain the VbCode database.
As this application closely resembles code presented in Chapter 13, we don’t
discuss it further in this chapter.

The VbCode database stores the code snippets and localized descriptions for
each. The case study supports five languages: English, Spanish, French, Portuguese,
and German. Visitors to the VB Snippets Web site locate the snippets they wish to
see (and copy) using keywords associated with each snippet. Figure 15-2 shows a
diagram of the VbCode database in the SQL Server Enterprise Manager. All of the

Figure 15-1. The C15_Code_Update project supports adding code snippets to the database,
editing them, and adding localized descriptions.

0279c15.fm Page 768 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

769769

accesses to this database in the VB Snippets case study occur through a single class
file that’s discussed later in this chapter.

Figure 15-2. The VbCode database stores the code snippets for display by the case study.

One of the advantages of collaborating with a professional designer is that you
can work concurrently. Using simple prototype Web pages, you can create and test
classes that you will use when you implement the Web application after the design is
completed. You can also create and populate test databases to use to test both the
prototypes and the finished Web application. Overlapping the work in this manner
allows you to improve the delivery time of a Web application significantly.

Like programming, Web site design is an intense, exacting occupation. And,
again like programming, the design of a good Web site takes time and effort. For-
tunately, Visual Studio .NET makes it possible to prototype a new Web application
while its design is in progress. The prototyping period is an excellent time to
establish a good working relationship with the professional Web site designer on
your team.

0279c15.fm Page 769 Thursday, June 13, 2002 5:20 AM

Chapter 15

770

Establishing a Working Relationship

Because of the newness of ASP.NET, Visual Basic .NET programmers and Web site
designers are still formulating their working relationships. Each organization will,
no doubt, create procedures to reflect its unique requirements. Over time, we
predict, Web design tools will integrate nicely with Visual Studio .NET, but you
don’t have to wait for that day. As we demonstrate in this case study, you can quite
productively build an ASP.NET Web application from a design that was created
using a tool other than Visual Studio .NET.

Why won’t your professional Web site designer be using Visual Studio .NET?
Although Visual Studio .NET offers a fine development environment for pro-
gramming, other tools have been created specifically for the purpose of creating
the HTML, images, and JavaScripts used for Web sites. Until Visual Studio .NET
matches those capabilities, Web site designers will—understandably—use the
tools that are familiar to them. Even when Visual Studio .NET does match those
capabilities, many Web designers will stick with the tool they know rather than
switch to something new.

Irrespective of their choice of tools, however, good Web designers provide
great value to a Web development project. A good Web designer combines an
artistic sense with a hard-earned knowledge of the variations in popular Web
browsers and is well versed in usability issues. Because it is surprisingly difficult to
create HTML that displays attractively in many browsers, good Web designers
work meticulously, sometimes to the point of inserting single pixels, to make their
designs look right in as many browsers as possible.

Just as it is very difficult to create a good cross-browser design, it is corre-
spondingly easy to mess it up. Even things that should not, in theory, make any
difference to a browser sometimes do. As programmers, we are used to seeing code
nicely indented, and the authors of this book like to see HTML nicely indented also.
All of the HTML examples in this book use indentation to help reveal the nested
structure. Nevertheless, “fixing” HTML by indenting it nicely sometimes causes it
to display incorrectly in one or more browsers. Perhaps the biggest step a pro-
grammer can take in creating a good working relationship with a professional Web
designer is to respect the design delivered: avoid making any unnecessary changes
to the HTML, and consult with the designer on all changes.

Delivering a Web Design

Organizations vary in the amount and nature of the paperwork required for each
phase of application development. In writing this book we have the luxury of side-
stepping paperwork issues to cut to the essentials. From a programmer’s

0279c15.fm Page 770 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

771771

perspective, you can expect a Web designer to deliver the following design
products:

• HTML pages (HTM or HTML files)

• CSS style sheet (CSS file)

• images (GIF and JPG files)

• JavaScript (JS file)

The VB Snippets case study makes use of all of these design products. Figure 15-3
shows a collage of seven of the thirty HTML pages delivered by the designer for VB
Snippets. Let us quickly mention that several of the design pages show different
states of particular pages, so not all thirty represent different Web pages to be
developed. For example, the index_logged_in.htm page contains the design of the

index.htm page after a visitor has logged in to the Web application.

The disadvantage of receiving HTML files in this form is, of course, that you
need to do some cutting and pasting after creating the corresponding ASPX files in
Visual Studio .NET. Because you will be creating reusable controls for many por-
tions of a Web design, however, the amount of this cutting and pasting is limited
enough not to be tedious. In the meantime, the delivered design remains a con-
stant reference. When anomalies appear during development (and some will), you
can compare the source HTML sent to the browser by your code to the HTML
delivered by the Web designer to determine the differences.

For Web applications other than the very smallest, you will also encounter sit-
uations that will require design updates. A frequent cause for this is that some
actual string data turns out to be longer than the designer expected. In that case,
you should show the designer how this affects the appearance of the Web page,
and allow the Web designer to make any required changes to the HTML originally
submitted. If you’ve established a good working relationship, the Web designer
will also help you locate, in difficult cases, the specific HTML problems that cause
the appearance of a Web page in a browser to differ from the design.

NOTE When you download the Chapter_15 project, you receive all of the
design files as well. You can find the original HTM, CSS, and JS files in the
Chapter_15\design folder. The Chapter_15\images folder contains the images
received from the designer.

0279c15.fm Page 771 Thursday, June 13, 2002 5:20 AM

Chapter 15

772

Converting a Web Design into a Web Application

Just as the Web designer is responsible for specifying the overall appearance of and
interaction among the pages of a Web site, the programmer is responsible for the
server-side implementation of that design. The implementation covers a lot of
ground, including the following details:

• ASP.NET Web pages (ASPX files)

• user controls (ASCX files)

Figure 15-3. The Web design HTML specifies the appearance and interaction among
the pages of the Web site.

0279c15.fm Page 772 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

773773

• custom controls (DLL files)

• code, including reusable classes (VB files)

• database queries (SQL or stored procedures)

• resources (RESX files)

• configuration (CONFIG files)

• deployment (DLL files and SETUP.EXE)

For a successful Web application, all of these pieces must work together flaw-
lessly, must be scalable, and must be easy to maintain. Our aim with this book has
been to show you how to use Visual Studio .NET and Visual Basic .NET to accom-
plish exactly that. The VB Snippets case study puts these tools to work to convert a

Web design into an ASP.NET application.
When collaborating with a professional Web designer, you will already have

created many of these pieces in prototype form before you ever receive the finished
design. Once the design has been delivered, you need to complete the development of
the Web application.

Factoring a Web Design for Implementation

Take another look at Figure 15-3. Many design elements repeat, some with varia-
tions, from page to page. The left side of each Web page displays a navigation
menu with items representing the homepage and the second-level pages in the
site. The large rectangle on the right side of each Web page contains four distinct
sections. A graphical logo appears at the top. Underneath the logo is a “bread-
crumb” section that allows a visitor to return to pages higher in the hierarchy from
the current page. (Appendix A provides more information about providing bread-
crumb links to enhance a Web site’s usability.) Underneath the breadcrumb
section is the main content section, which varies greatly from page to page (but it
is the only section to do so). The bottom section displays a standard footer con-
taining copyright and business information.

Figure 15-4 shows an ASPX page in Visual Studio .NET that distills the basic
structure of all the HTML pages delivered by the Web designer. A table containing
just one row of two cells defines the overall left and right structure of each page.

The three user controls in Figure 15-4—smaNav, smaLogo, and smaFoot—appear
in every Web page in the case study. The custom control BreadCrumbs appears in
every Web page except for the homepage (index.aspx), which is at the top of the
hierarchy and needs no backwards navigation to parent levels of the hierarchy. We

0279c15.fm Page 773 Thursday, June 13, 2002 5:20 AM

Chapter 15

774

present the code for each of these controls in this chapter. We also describe other
controls with more-limited use, such as a control that displays localized graphic
buttons. Figure 15-5 shows the basic page in Visual Studio .NET after a Build and
Browse. As you can see, the four controls on the page duplicate the appearance of
the HTML received from the Web designer.

The VB Snippets case study also makes use of four class files. The CLocalization
class, introduced in Chapter 13, encapsulates common functionality needed to
localize each Web page. We do not discuss it further here. Two classes—CVbUser
and CVbCode—encapsulate the code that’s needed to access the two databases used
by the application. We discuss portions of the CVbCode class in this chapter, and you
can download and examine the full code for both. The fourth class, CVisitor,
encapsulates information about the current visitor that is needed to personalize
some of the displays in VB Snippets. As shown later in this chapter, the information
in CVisitor comes from persistent cookies as well as the VbUser database.

Figure 15-4. The aa_basic.aspx Web page defines the structure of all the ASPX pages
in the VB Snippets case study.

0279c15.fm Page 774 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

775775

Figure 15-5. The controls on the aa_basic.aspx Web page encapsulate design
elements that recur throughout the Web site.

By factoring a Web application in this manner, you achieve the benefits of
object-oriented programming. The classes may be instantiated and used
throughout the Web application. When changes are needed, they are isolated
within the appropriate class. Once tested, the code in a class works properly no
matter what other class uses it.

Implementing a Web Design

The coherent look and feel of a professionally designed Web site arises from the
common design elements, which lend themselves to the creation of controls. The
main content area of each page, however, is tailored to the specific information
provided there. When working with a professional designer, you can implement a

Web application via the following steps:

0279c15.fm Page 775 Thursday, June 13, 2002 5:20 AM

Chapter 15

776

1. Create class files during the prototyping phase. You will need to modify
and extend the classes during implementation, of course, but this gives
you a running start.

2. Isolate common design elements into controls and develop the controls.

3. Create a basic structure page containing the design elements that are
common to all of the Web pages in the application.

4. For each unique Web page in the application, create a separate ASPX page
that matches the basic structure page.

5. Set the properties of each modifiable control to meet the requirements of
the specific Web page being developed.

6. Paste the HTML from the content area delivered by the Web designer into
the content area of the ASPX page.

7. Localize the strings in the content area.

8. Substitute server controls for all HTML elements in the Web page that you
will need to handle at the server. You may convert existing HTML tags by
adding an id attribute and runat="server", or you may substitute ASP.NET
Web server controls that generate equivalent HTML.

9. Write and test the server code behind the Web page.

You can determine the common design elements by inspection, as we already
showed for the VB Snippets case study. Some of the resulting controls will belong
in the basic structure page as shown in Figures 15-4 and 15-5. Once you create the
basic structure page, you are ready to tackle localizing and programming the main
content area of each page.

0279c15.fm Page 776 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

777777

Localizing a Web Page Design

We covered the localization of Web pages in Chapter 13. In a nutshell, you create
separate resource files for each language that your Web site will support. Your code
accesses the localized strings through a System.Resources.ResourceManager instance
declared like this:

Protected rm As ResourceManager

In the Page_Load procedure, you instantiate the ResourceManager class with a statement
such as the following:

rm = New ResourceManager("Chapter_15.strings", GetType(index).Assembly)

The ASPX file inherits the code behind specified in its Page directive and uses
the protected ResourceManager instance to supply the correct values for all localized
strings. After you paste the content area from the design into the corresponding
ASPX file, you simply go through the HTML looking for strings such as

Password:

Replace each string with the corresponding localization element, like this:

<%=rm.GetString("Password")%>

As we explained in Chapter 13, localizing strings in this manner requires the
addition of an RESX file to your application for each language that your Web appli-
cation will support. However, there can be benefits to localization even if you don’t
plan your Web application to be multilingual. Should the phrasing or terms used
in a Web site change, whether because of marketing or other considerations, you
can makethe necessary corrections in the RESX file without having to hunt them
down in the HTML for all the Web pages in the application. Figures 15-6 and 15-7
show screenshots of the VB Snippets homepage, index.aspx, in English and German.

0279c15.fm Page 777 Thursday, June 13, 2002 5:20 AM

Chapter 15

778

One thing you won’t be expected to do as a programmer is to provide the
translations yourself. For the VB Snippets case study, we obtained the translations
from the Internet to illustrate the mechanics of localization, but for a real appli-
cation we would employ a professional translator.

Note that the controls on the page have also been localized, including the
graphical Log In button. As you will see shortly, the localization of controls works
just like the localization of Web pages.

Figure 15-6. The localized index.aspx page obtains its strings via a ResourceManager instance
rather than hard-coded HTML.

0279c15.fm Page 778 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

779779

Figure 15-7. When a visitor’s browser specifies German as the preferred language,
the index.aspx page responds accordingly.

Modifying the Structure of a Web Page in Code

The VB Snippets application does not require a visitor to log in to view the infor-
mation available. Instead, the application invites the visitor to register and log in
to receive personalized information. For example, the registered visitor can identify
keywords of interest and request email notifications when code snippets associated
with those keywords are added to the database. VB Snippets also keeps track of the
last visit by a logged-in visitor and uses that information to call attention to code
snippets that were added to the database since his or her last visit. Once registered
with VB Snippets, the visitor can log in to the application and receive personalized
displays and update preferences on his or her profile.

0279c15.fm Page 779 Thursday, June 13, 2002 5:20 AM

Chapter 15

780

After a visitor logs in, however, the rectangle in the homepage that accepts
login information becomes superfluous. The Web designer recognized this by pro-
viding two design versions of the homepage: index.htm and index_logged_in.htm.
The VB Snippets case study shows how to modify the appearance of a page to
adapt to such circumstances. Figure 15-8 shows a screenshot of a registered
visitor’s log in entries on the VB Snippets homepage. Figure 15-9 shows the top
portion of the homepage after the visitor completes the login procedure.

The version of index.aspx received by a logged-in visitor does not display the
no-longer-needed login area. It does however, greet the visitor by name and
display the word new with each snippet added to the database since this visitor’s
last visit. As shown later in this chapter, some of the information used to identify a
logged-in visitor comes from a persistent cookie stored at the client. The visitor
can remove the cookie at any time by clicking the Log Out link that appears in the
breadcrumb section of the page.

Figure 15-8. The index.aspx page provides a convenient area for a registered visitor to log in.

0279c15.fm Page 780 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

781781

Figure 15-9. A logged-in visitor receives a personalized version of the index.aspx page.

The visible property of server controls comes in handy for modifying the
appearance of a Web page in circumstances such as these. When the visible
property is False, ASP.NET renders no HTML for the control. You can’t get more
invisible than that! In the present example, all of the HTML for the login area is
contained within a table element with a start tag originally designed as follows:

<table class="tform" cellSpacing="6" cellPadding="0" align="right" border="0">

0279c15.fm Page 781 Thursday, June 13, 2002 5:20 AM

Chapter 15

782

By adding id="tblLogin" and runat="server" attributes to the tag, you convert the
table to a server control. The following code then removes the table entirely for a
logged in visitor:

If User.Identity.IsAuthenticated Then

 Me.tblLogin.Visible = False

End If

An authenticated visitor does not see the tblLogin element. ASP.NET generates no
HTML for it in building the response.

It is just as easy to add information that appears only to logged-in visitors.
Simply add an element in the proper position like so:

If the visitor has not logged in, the element does not appear. For a logged-in visitor,
though, you can display personalized information as follows:

If User.Identity.IsAuthenticated Then

 Me.pLoggedIn.Visible = True

 Me.pLoggedIn.InnerHtml = "Some personalized information..."

End If

The visible property gives you great flexibility in tailoring the appearance of a
Web page for particular situations. Another way that Web page displays can vary is
through the use of data-bound controls, as covered in Chapter 7.

Incorporating Bound Data into a Web Page

If you download the code for this chapter, you can check out all of the HTML orig-
inally delivered with the VB Snippets design. As you will see, the design versions of
many of the Web pages, including index.htm, show tabular information in HTML
tables. In VB Snippets, however, we plan to bind those displays to current database
information. Therefore, the ASPX pages replace those tables in the design with
data-bound controls.

VB Snippets uses the DataGrid control in several pages to display bound data.
Templates customize the displays within the columns of the grid. Listing 15-1
defines the DataGrid used in the content area of the index.aspx page. The columns
element defines the three column-display, with an asp:templatecolumn element
enclosing the definition of each column. Because this is a display-only Web appli-
cation, only itemtemplate elements are included within each column.

0279c15.fm Page 782 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

783783

Listing 15-1. The grdNewExamples DataGrid in index.aspx

<asp:datagrid id="grdNewExamples" runat="server" cellpadding="5"

 cssclass="tborder" autogeneratecolumns="False">

 <headerstyle horizontalalign="Center" cssclass="thead"></headerStyle>

 <itemstyle cssclass="tmain"></itemstyle>

 <columns>

 <asp:templatecolumn itemstyle-borderwidth="2" headerstyle-borderwidth="2"

 itemstyle-horizontalalign="Center" itemstyle-wrap="False" >

 <itemtemplate>

 <a href='<%# Container.DataItem("Link") %>'>

 <%=rm.GetString("ViewCode")%>

 </itemtemplate>

 </asp:templatecolumn>

 <asp:templatecolumn itemstyle-borderwidth="2" headerstyle-borderwidth="2"

 itemstyle-horizontalalign="Center" itemstyle-wrap="False" >

 <itemtemplate>

 <%# Container.DataItem("Date") %>

 <asp:label id="lblNew" runat="server" cssclass="new" >

 <%# Container.DataItem("New") %></asp:label>

 </itemtemplate>

 </asp:templatecolumn>

 <asp:templatecolumn headertext="Description" itemstyle-borderwidth="2"

 headerstyle-borderwidth="2">

 <itemtemplate><%# Container.DataItem("Description") %>

 <p class="topsep" /><%=rm.GetString("keywords")%>

 <%# Container.DataItem("Keywords") %>

 </itemtemplate>

 </asp:templatecolumn>

 </columns>

</asp:datagrid>

As you can see in Listing 15-1, a data grid can display both localized strings
and bound data. You can also add information to a data grid programmatically as
we did here:

Me.grdNewExamples.Columns(0).HeaderText = rm.GetString("GrabIt")

Me.grdNewExamples.Columns(1).HeaderText = rm.GetString("Added")

Me.grdNewExamples.Columns(2).HeaderText = rm.GetString("Description")

This code adds the localized header strings that appear at the top of each column
in the grid.

All data for the grid displays comes from methods of the CVbCode class, which
provides access to the VbCode database. Later in this chapter, we take a look at the

0279c15.fm Page 783 Thursday, June 13, 2002 5:20 AM

Chapter 15

784

inner workings of this class. When a visitor is logged in, the following code
retrieves and binds data for the grdNewExamples display:

Me.grdNewExamples.DataSource = oCode.NewExamples(_

 NewExampleDate:=oVisitor.LastVisit, _

 StartDate:=CDate(Me.txtSearchDate.Text), _

 Culture:=_sCulture)

Me.grdNewExamples.DataBind()

Here, the oCode and oVisitor variables reference instances of the CVbCode and CVisitor
classes, respectively. The private _sCulture variable specifies the language to dis-
play for the current visitor.

To complete the implementation of a Web design, you work through each
page, converting its HTML content into the ASPX equivalent. In the natural order
of things, some pages will be somewhat complex and others will be very simple. To
verify for yourself the straightforward nature of this process, you can compare the
Web pages in the VB Snippets case study with the HTML versions delivered by the
Web designer.

From a Visual Basic .NET programmer’s perspective, the implementation of
controls used within the Web pages provides a more interesting challenge. Now
let’s take a look at the controls used in the VB Snippets case study.

Encapsulating Design Elements in Controls

As with Web pages themselves, the common elements in a Web design can range
from very simple to quite complex. By writing controls for the common design ele-
ments, you ensure that the HTML and code for each element is reusable across all
of the Web pages in the application. Should changes be required, you have only
one place to make them. In Chapter 10, 11, and 12, we covered the creation of user
controls and custom Web controls. In this chapter, we demonstrate how to create
controls to implement the VB Snippets design. We start with a couple of simple
controls and progress to the more substantial.

Using Graphics in a Header Control

The top section of each VB Snippets Web page contains a graphical logo. Figure 15-10
shows the appearance of the logo on a white background. As you can see, the
image contains no pixels beyond those absolutely necessary to produce the logo.
Reducing the size and number of the graphics in a Web site reduces the response
time of a Web site, thereby improving the visitor’s experience with it.

0279c15.fm Page 784 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

785785

Figure 15-10. The Web designer purposely kept the VB Snippets logo.gif image as
small as possible.

The VB Snippets logo is displayed by the simple user control
u_vbsnippets_logo.ascx in Listing 15-2. Although encapsulating the logo in a user
control doesn’t buy much in this case, it will still be helpful if the logo should
change. You would then have to edit in only one place to change the width and
height of the new logo, rather than having to change each ASPX file in the Web
application.

Listing 15-2. The u_vbsnippets_logo.ascx User Control

<%@ Control Language="vb" AutoEventWireup="false"

 Codebehind="u_vbsnippets_logo.ascx.vb"

 Inherits="Chapter_15.u_vbsnippets_logo"

 TargetSchema="http://schemas.microsoft.com/intellisense/ie5" %>

<img border="0" src="images/logo.gif" alt="VB Snippets Logo"

 width="290" height="33">

0279c15.fm Page 785 Thursday, June 13, 2002 5:20 AM

Chapter 15

786

Once you add a Register directive to a Web page for this user control, you can
add it to the proper table cell like this:

<td width="100%" class="tlogo" align="middle">

 <sma:logo id="smalogo" runat="server" />

</td>

In the implementation of VB Snippets, the basic structure page naturally contains
the Register directives for those controls used throughout the design, making it a
simple operation to add them to any new ASPX file.

The tlogo CSS class specifies the background color for the table cell that con-
tains the logo. The definition of the tlogo class in Styles.css is as follows:

.tlogo{

background-color: #369;

border: 1px solid #000;

}

The Web designer created the logo to avoid dithering when displayed against this
specific blue-green Web-safe color.

Developing a Localized Footer Control

The bottom section of the right-hand side of each VB Snippets page (look back at
Figure 15-5) contains a footer that displays business information and links. This
user control is localized using the same code that you use to localize a Web page.
Listing 15-3 contains the localized ASCX code for this control.

Listing 15-3. The u_code_foot.ascx User Control

<%@ Control Language="vb" AutoEventWireup="false"

 Codebehind="u_code_foot.ascx.vb"

 Inherits="Chapter_15.u_code_foot"

 TargetSchema="http://schemas.microsoft.com/intellisense/ie5" %>

<p class="footertopic">© 2002

 <a class="footer"

 href="http://www.smartisans.com">SoftMedia Artisans, Inc.

 <%=rm.GetString("CodePermission")%>

 <%=rm.GetString("TermsOfUse")%>

 <%=rm.GetString("forDetails")%>

</p>

0279c15.fm Page 786 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

787787

Styles provided by the Web designer control the font, size, and color of the text
displayed in the u_code_foot user control, as well as the background and link
colors. Listing 15-4 shows the complete code behind this user control. As you see,
the only code requirement is to supply the ResourceManager instance required for
localization.

Listing 15-4. The u_code_foot.ascx.vb User Control Code

Protected rm As ResourceManager

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

 'Put user code to initialize the page here

 rm = New ResourceManager("Chapter_15.strings", GetType(index).Assembly)

End Sub

Although useful, the logo and footer user controls don’t offer much programming
challenge. The navigation menu control, although still fairly simple, varies its
display from page to page. Let’s look at it now.

Developing a Control for the Navigation Menu

The left side of each VB Snippets Web page displays a navigation menu with an
item at the top for the homepage and with items for the second-level pages in the
Web site beneath the homepage item. The design adds this wrinkle: the item for
the currently displayed page appears highlighted instead of as a link. The navi-
gation menu for lower-level search pages and browse pages highlight the search
and browse items, respectively. As we shall see, breadcrumb links provide for nav-
igation within the search and browse pages.

The VB Snippets navigation menu has been implemented as a custom control
within a user control. The custom control uses property settings to render the
correct HTML for each Web page, and the user control encloses the custom control in
a table that positions the snip-snip-snip dotted line graphics in the upper left and
lower right corners.

Rendering the Navigation HTML

The custom control in Listing 15-5 uses the value of its CurrentIndex property to
control the rendering of its HTML. Because the control resides in a separate DLL, it
also requires a ResourceManager instance from its caller to provide the desired
localization.

0279c15.fm Page 787 Thursday, June 13, 2002 5:20 AM

Chapter 15

788

Listing 15-5. The Navigation.vb Custom Control

Option Strict On

Imports System.Resources

Imports System.ComponentModel

Imports System.Web.UI

<DefaultProperty("CurrentIndex"), _

ToolboxData("<{0}:Navigation runat=server></{0}:Navigation>")> _

Public Class Navigation

 Inherits System.Web.UI.WebControls.WebControl

 Private _rm As ResourceManager

 Private _asLink() As String = {"index.aspx", _

 "code_search.aspx", "code_browse_all.aspx", _

 "my_profile.aspx", "terms_of_use.aspx", "privacy_policy.aspx"}

 Private _iCurrent As Integer = 0

 <Bindable(True), Category("Behavior"), DefaultValue(0)> _

 Property CurrentIndex() As Integer

 Get

 Return _iCurrent

 End Get

 Set(ByVal Value As Integer)

 If Value <= UBound(_asLink) Then

 _iCurrent = Value

 End If

 End Set

 End Property

 <Bindable(False)> _

 Property ResourceManager() As ResourceManager

 Get

 Return _rm

 End Get

 Set(ByVal Value As ResourceManager)

 _rm = Value

 End Set

 End Property

0279c15.fm Page 788 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

789789

 Protected Overrides Sub Render(ByVal output As System.Web.UI.HtmlTextWriter)

 If _rm Is Nothing Then

 Throw New Exception("C15_Ctl_Lib-Navigation: " _

 & "No resource manager provided.")

 End If

 Dim asLabel() As String = Split(_rm.GetString("NavStrings"), ",")

 Dim i As Integer, iMax As Integer = UBound(asLabel)

 If iMax <> UBound(_asLink) Then

 Throw New Exception("C15_Ctl_Lib-Navigation: " _

 & "Wrong number of localized navigation strings.")

 End If

 'Move to left margin

 output.WriteLine()

 For i = 0 To iMax

 If i = 4 Then

 'Insert separator line before next paragraph

 output.AddAttribute(HtmlTextWriterAttribute.Align, "center")

 output.RenderBeginTag(HtmlTextWriterTag.P)

 output.AddAttribute(HtmlTextWriterAttribute.Border, "0")

 output.AddAttribute(HtmlTextWriterAttribute.Width, "120")

 output.AddAttribute(HtmlTextWriterAttribute.Height, "8")

 output.AddAttribute(HtmlTextWriterAttribute.Alt, "")

 output.AddAttribute(HtmlTextWriterAttribute.Src, _

 "images/box_h8.gif")

 output.RenderBeginTag(HtmlTextWriterTag.Img)

 output.RenderEndTag()

 output.WriteLine()

 End If

 'Insert link text paragraph

 output.RenderBeginTag(HtmlTextWriterTag.P)

0279c15.fm Page 789 Thursday, June 13, 2002 5:20 AM

Chapter 15

790

 If i = 0 Then

 'Add shim for spacing

 output.AddAttribute(HtmlTextWriterAttribute.Width, "8")

 output.AddAttribute(HtmlTextWriterAttribute.Height, "8")

 output.AddAttribute(HtmlTextWriterAttribute.Alt, "")

 output.AddAttribute(HtmlTextWriterAttribute.Src, _

 "images/shim.gif")

 output.RenderBeginTag(HtmlTextWriterTag.Img)

 output.Write("
")

 End If

 If i = _iCurrent Then

 'Already linked to this page (or section)

 output.AddAttribute(HtmlTextWriterAttribute.Class, "navtopic")

 output.RenderBeginTag(HtmlTextWriterTag.Span)

 output.Write(asLabel(i))

 output.RenderEndTag()

 Else

 'Output link

 output.AddAttribute(HtmlTextWriterAttribute.Href, _asLink(i))

 output.AddAttribute(HtmlTextWriterAttribute.Class, "nav1")

 output.RenderBeginTag(HtmlTextWriterTag.A)

 output.Write(asLabel(i))

 output.RenderEndTag()

 End If

 If i = iMax Then

 'Add spacing

 output.Write("
 ")

 End If

 'Close paragraph

 output.RenderEndTag()

 output.WriteLine()

 Next

 End Sub

End Class

0279c15.fm Page 790 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

791791

The CurrentIndex property for the navigation custom control uses a value of 0
for the homepage item, and the second level items start with a CurrentIndex value
of 1. The aslink() string array contains the list of links for all of the Web pages in
the control, with the list ordered to correspond to the associated CurrentIndex
values. The text for each item comes from the NavStrings data in the resource file
that’s determined by the ResourceManager instance. For English-speaking visitors,
the NavStrings data appears in strings.resx like this:

<data name="NavStrings">

 <value>Home,Search for Code,Browse Code,My Profile,Terms of Use,Privacy

 Policy</value>

</data>

Each of the other supported languages has its own NavStrings data.
The Render method outputs links for all of the navigation menu items except

for the item corresponding to the CurrentIndex property. The Render method

outputs a span element for the CurrentIndex item. CSS classes supplied by the Web
designer control the appearance of the elements within the control. The Render
method also inserts a graphical separator after the first four items.

The actual HTML rendered by the navigation custom control matches that
supplied by the Web designer for each page. By looking at the HTML delivered by
the Web designer for each page, it was a simple task to see the pattern. Testing the
control consisted of comparing the HTML rendered by the control with that in the
original design for each Web page.

One of the great things about custom controls is that you can render any
HTML specified by the Web designer. In tough situations, this can be a lifesaver.

Embedding a Custom Control in a User Control

In VB Snippets, the navigation custom control is enclosed within the
u_navigate.ascx user control. You can register a custom control in a user control in
the same way as you do in a Web page. Figure 15-11 shows the Design view of the
navigation menu user control.

The code for the navigation menu user control (Listing 15-6) provides the
property values required by the custom control it encloses. The code instantiates
the ResourceManager class and sets the smaccNav.ResourceManager property to reference
it before using its own CurrentIndex property to set the smaccNav.CurrentIndex
property.

0279c15.fm Page 791 Thursday, June 13, 2002 5:20 AM

Chapter 15

792

Listing 15-6.The u_navigate.ascx.vb User Control Code

Option Strict On

Imports System.Resources

Public MustInherit Class u_navigate

 Inherits System.Web.UI.UserControl

 Protected WithEvents smaccNav As C15_Ctl_Lib.Navigation

 [Designer generated code omitted]

 Private Sub Page_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 'Put user code to initialize the page here

 Dim rm As ResourceManager

Figure 15-11. For design purposes, the navigation menu user control encloses a custom
control within a table containing graphical elements.

0279c15.fm Page 792 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

793793

 rm = New ResourceManager("Chapter_15.strings", GetType(index).Assembly)

 smaccNav.ResourceManager = rm

 smaccNav.CurrentIndex = _CurrentIndex

 End Sub

 Private _CurrentIndex As Integer = 0

 Property CurrentIndex() As Integer

 Get

 Return _CurrentIndex

 End Get

 Set(ByVal Value As Integer)

 _CurrentIndex = Value

 End Set

 End Property

End Class

The navigation menu user control makes it a trivial task to output the HTML
for the left-hand cell of each VB Snippets Web page. For example, the following
lines form the complete specification for the left-hand cell of index.aspx:

<td vAlign="top">

 <sma:nav id="smaNav" runat="server" currentindex="0" />

</td>

The code for each page varies only according to the CurrentIndex value. In
most cases, this value can be set once (as just shown) and forgotten. However, it is
possible to navigate to a code_example page from the homepage, a search page, or
a browse page. For the code_example page, therefore, the CurrentIndex property is
set programmatically.

Developing a Breadcrumb Control

Hansel and Gretel used breadcrumbs to mark their path in the forest, but the birds
had a competing agenda. Well-designed Web sites use the same idea to assist a
visitor in navigation: breadcrumb links above the main content of a Web page help
to orient a visitor within a Web site and provide a convenient way to retrace one’s
last steps. Fortunately, Web sites don’t have to worry about birds.

If you surf the Web as often as most of us do, you will have noticed that bread-
crumb links are not standardized across Web sites. Figure 15-12 shows an example
of breadcrumb links as implemented in VB Snippets.

0279c15.fm Page 793 Thursday, June 13, 2002 5:20 AM

Chapter 15

794

The VB Snippets Web site allows the visitor to browse through all of the code
examples or to browse through just those snippets that are associated with a par-
ticular keyword. Whenever a visitor clicks a keyword link, the Web site displays the
browse page for that keyword. The screenshot in Figure 15-12 displays a code
snippet from the ArrayList browse page. The breadcrumb links provide an easy
way for the visitor to return to that particular browse page, to the browse-all page,
or to the homepage. And, of course, all but one of the links in the navigation menu
are also available.

Figure 15-12. VB Snippets breadcrumbs indicate the path the visitor used to select a
particular code snippet.

0279c15.fm Page 794 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

795795

Deciding What Breadcrumb Links to Display

Breadcrumb links are not yet standardized for several reasons. When you begin to
consider what breadcrumbs to display in each situation, you realize that providing
the right links is not so simple as it originally appears. There are many convoluted
paths through a Web site. If you adopt the approach of adding a breadcrumb link
for each stop along the way, your page will display too many links to be useful.
Such an approach makes it easy for the visitor to retrace his or her steps, but doing
so obscures the overall organization of the Web site. To make this approach work,
you need a well-conceived method of reducing the number of links displayed as
the visitor navigates through the Web site.

Another possible approach to breadcrumb links is to show the position of the
current page within the hierarchy regardless of the path the visitor used to arrive
there. Such breadcrumb links keep a visitor oriented, but make it difficult to
retrace one’s steps. The example in Figure 15-12 points out another flaw in this
hierarchical approach: some Web pages don’t fit neatly into a hierarchy. You can
display a code snippet from a browse page, a search page, or the homepage, so
who’s to say where it fits within the hierarchy?

As it happens, this is just the sort of issue that professional Web designers
relish. You can expect a professional Web designer to specify breadcrumb links
that are optimized for the particular requirements of your site. The VB Snippets
Web designer carefully designed breadcrumb links to work effectively with the
case study, and the BreadCrumbs.vb custom control implements that design.

Implementing a Hybrid Breadcrumb Link Design

Most of the VB Snippets Web pages display hierarchical breadcrumb links. When it
comes to the display of code examples, though, the breadcrumb links make it easy
for the visitor to return to the previous search page, browse page, or homepage.

Listing 15-7 contains the code for the breadcrumbs custom control. Like the nav-
igation custom control, the breadcrumbs custom control exposes a ResourceManager
property that’s used for localization purposes. The CurrentPage property identifies
the last breadcrumb in the chain—the breadcrumb that is not a link. The
BrowseItem property identifies the specific keyword to display in a browse bread-
crumb link. (Figure 15-12 illustrates how the BrowseItem property is used.) The From
property identifies the route the visitor took to arrive at the current page. VB
Snippets uses session-state variables to store this information. The read-only
CodePath property returns the index used by the code_example page to control the
navigation menu display. If the visitor arrived via a search page, for example, the
CodePath property returns the value 1.

0279c15.fm Page 795 Thursday, June 13, 2002 5:20 AM

Chapter 15

796

Listing 15-7. The BreadCrumbs.vb Custom Control

Option Strict On

Imports System.Resources

Imports System.ComponentModel

Imports System.Web.UI

Imports System.Web

<DefaultProperty("CurrentPage"), _

ToolboxData("<{0}:BreadCrumbs runat=server></{0}:BreadCrumbs>")> _

Public Class BreadCrumbs

 Inherits System.Web.UI.WebControls.WebControl

 Private _rm As ResourceManager

 Private _sCrumbList As String = "Home,"

 Private _sLinkList As String = "index.aspx"

 Private _sCurrentPage As String

 Private _sFrom As String

 Private _iCodePath As Integer = 0

 Private _sBrowseItem As String = String.Empty

 <Bindable(True), Category("Behavior"), DefaultValue("")> _

 Property CurrentPage() As String

 Get

 Return _sCurrentPage

 End Get

 Set(ByVal Value As String)

 'Values: Browse, Search, Code, Terms, Privacy

 _sCurrentPage = Value

 Select Case Value

 Case "Browse"

 'Browse all unless BrowseItem set

 If _sBrowseItem = String.Empty Then

 _sCrumbList &= "BrowseAll"

 End If

 Case "Search"

 'General search unless SearchQuery set

 _sCrumbList &= "SearchFor"

 Case "Results"

 _sCrumbList = "Home,SearchFor,Results"

 _sLinkList = "index.aspx,code_search.aspx"

0279c15.fm Page 796 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

797797

 Case "Code"

 'Set default

 _sCrumbList &= "Code"

 'Code breadcrumbs depend upon visitor's navigation

 If Not _sFrom = String.Empty Then

 If _sFrom = "B" Then

 'Got here from Browse All

 _sCrumbList = "Home,BrowseAll,Code"

 _sLinkList = "index.aspx,code_browse_all.aspx"

 _iCodePath = 2

 ElseIf _sFrom.StartsWith("B:") Then

 'Got here from Browse Item

 _sCrumbList = "Home,BrowseAll,Browse,Code"

 _sBrowseItem = _sFrom.Substring(2)

 _sLinkList = "index.aspx,code_browse_all.aspx,code_browse_" _

 & _sBrowseItem & ".aspx"

 _iCodePath = 2

 ElseIf _sFrom.StartsWith("S:") Then

 'Got here from Search Results

 _sCrumbList = "Home,SearchFor,Results,Code"

 _sLinkList _

 = "index.aspx,code_search.aspx,code_search_results.aspx"

 _iCodePath = 1

 Else

 'Retain defaults

 End If

 End If

 Case Else

 'Homepage only link

 _sCrumbList &= Value

 End Select

 End Set

 End Property

0279c15.fm Page 797 Thursday, June 13, 2002 5:20 AM

Chapter 15

798

 <Bindable(True), Category("Behavior"), DefaultValue("")> _

 Property BrowseItem() As String

 Get

 Return _sBrowseItem

 End Get

 Set(ByVal Value As String)

 'Specific browse

 _sBrowseItem = Value

 _sCrumbList = "Home,BrowseAll,Browse"

 _sLinkList = "index.aspx,code_browse_all.aspx"

 End Set

 End Property

 <Bindable(False)> _

 Property From() As String

 Get

 Return _sFrom

 End Get

 Set(ByVal Value As String)

 _sFrom = Value

 End Set

 End Property

 <Bindable(False)> _

 ReadOnly Property CodePath() As Integer

 Get

 Return _iCodePath

 End Get

 End Property

 <Bindable(False)> _

 Property ResourceManager() As ResourceManager

 Get

 Return _rm

 End Get

 Set(ByVal Value As ResourceManager)

 _rm = Value

 End Set

 End Property

 Protected Overrides Sub Render(ByVal output As System.Web.UI.HtmlTextWriter)

 If _rm Is Nothing Then

 Throw New Exception("C15_Ctl_Lib-BreadCrumbs: " _

 & "No resource manager provided.")

 End If

0279c15.fm Page 798 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

799799

 Try

 Dim asCrumb() As String = Split(_sCrumbList, ",")

 Dim asLink() As String = Split(_sLinkList, ",")

 Dim i As Integer, iMax As Integer = UBound(asCrumb)

 'All except last crumb are links

 Debug.Assert(iMax = UBound(asLink) + 1, "C15_Ctl_Lib-BreadCrumbs: " _

 & "Mismatch in list counts.")

 'Crumbs: Home, BrowseAll, Browse, SearchFor, Results,

 ' Code, Terms, Privacy

 For i = 0 To iMax

 If asCrumb(i) = "Browse" Then

 asCrumb(i) = _rm.GetString("Browse") _

 & " (" & _sBrowseItem & ")"

 Else

 asCrumb(i) = _rm.GetString(asCrumb(i))

 End If

 Next

 'Move to left margin

 output.WriteLine()

 'Render breadcrumbs paragraph

 output.AddAttribute(HtmlTextWriterAttribute.Class, "lfloatpad")

 output.RenderBeginTag(HtmlTextWriterTag.P)

 For i = 0 To iMax

 'Render arrow image

 output.AddAttribute(HtmlTextWriterAttribute.Border, "0")

 output.AddAttribute(HtmlTextWriterAttribute.Width, "6")

 output.AddAttribute(HtmlTextWriterAttribute.Height, "10")

 output.AddAttribute(HtmlTextWriterAttribute.Alt, "")

 output.AddAttribute(HtmlTextWriterAttribute.Src, _

 "images/arrow.gif")

 output.RenderBeginTag(HtmlTextWriterTag.Img)

 If i < iMax Then

 'Create a link

 output.AddAttribute(HtmlTextWriterAttribute.Class, "crumb")

 output.AddAttribute(HtmlTextWriterAttribute.Href, asLink(i))

 output.RenderBeginTag(HtmlTextWriterTag.A)

 output.Write(asCrumb(i))

 output.RenderEndTag()

0279c15.fm Page 799 Thursday, June 13, 2002 5:20 AM

Chapter 15

800

 Else

 'Display current page info

 output.AddAttribute(HtmlTextWriterAttribute.Class, "crumb")

 output.RenderBeginTag(HtmlTextWriterTag.Span)

 'If Not _sBrowseItem = String.Empty Then

 ' asCrumb(i) &= " (" & _sBrowseItem & ")"

 'End If

 output.Write(asCrumb(i))

 output.RenderEndTag()

 End If

 Next

 output.RenderEndTag()

 'Render log in/out link

 output.AddAttribute(HtmlTextWriterAttribute.Class, "rfloatpad")

 output.RenderBeginTag(HtmlTextWriterTag.P)

 output.AddAttribute(HtmlTextWriterAttribute.Class, "logout")

 If Page.User.Identity.IsAuthenticated Then

 'Already logged in

 output.AddAttribute(HtmlTextWriterAttribute.Href, _

 "index.aspx?action=logout")

 output.RenderBeginTag(HtmlTextWriterTag.A)

 output.Write(_rm.GetString("LogOut"))

 output.RenderEndTag()

 ElseIf _sCurrentPage <> "LogIn" Then

 'Link to log in page

 output.AddAttribute(HtmlTextWriterAttribute.Href, "log_in.aspx")

 output.RenderBeginTag(HtmlTextWriterTag.A)

 output.Write(_rm.GetString("LogIn"))

 output.RenderEndTag()

 End If

 output.RenderEndTag()

 output.RenderEndTag()

 Catch ex As Exception

 Throw New Exception("C15_Ctl_Lib-BreadCrumbs: " & ex.Message)

 End Try

 End Sub

End Class

0279c15.fm Page 800 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

801801

The breadcrumbs custom control works by building two lists: one for the text
to display for each breadcrumb and another list for the link associated with each
breadcrumb except the last, which represents the current page. The control stores
the lists in the string variables _sCrumbList and _sLinkList until the Render method
needs them. The Render method splits the strings into string arrays named
asCrumb() and asLink() for processing.

The values in asCrumb() serve as keys to resource files to obtain localized
strings. The Render method creates the appropriate link for each breadcrumb
except for the last one in the asCrumb() array.

Using Session State to Remember Previous Links

To enable a page to determine its predecessor, VB Snippets uses a session-state
variable. When the code_browse page processes, for example, it executes the
following instructions:

sKeyword = oCode.Keyword

Me.smaccCrumbs.BrowseItem = sKeyword

Session("From") = "B:" & sKeyword

After the page is disposed, the From session-state variable retains a value that
identifies the last page active in the session and, in this case, the keyword used to
build that particular browse page. Note that this is the same keyword used to set
the BrowseItem property of the breadcrumbs control.

When the code_example page executes, it sets the From property equal to the
From session-state variable, as in the following code from the Page_Load procedure:

smaccCrumbs.From = CStr(Session("From"))

smaccCrumbs.CurrentPage = "Code"

smaccCrumbs.ResourceManager = rm

The information supplied by this code enables the breadcrumbs control to con-
struct the lists used by the Render method.

In return, the code_example page relies upon information supplied by the
breadcrumbs control to set the CurrentIndex property of the navigation menu. The
following code, also from the Page_Load procedure, transfers the appropriate index:

Dim ouNav As u_navigate

ouNav = CType(Me.FindControl("smaNav"), u_navigate)

ouNav.CurrentIndex = smaccCrumbs.CodePath

0279c15.fm Page 801 Thursday, June 13, 2002 5:20 AM

Chapter 15

802

Although we’ve focused on the code_browse page during this discussion, the
code_example page also displays the correct breadcrumb links when accessed by
other paths. Figure 15-13 shows a screenshot of a code snippet located through the
code_search_results page.

The visitor in Figure 15-13 can return directly to the search results page that
led to this snippet, can skip back to start another search, or can link to another
page entirely from the navigation menu.

Figure 15-13. A visitor can display a code snippet by means of a search page.

0279c15.fm Page 802 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

803803

Using Authentication to Vary the Display

To conclude our presentation of the breadcrumb custom control, we need to
mention one other feature. As Figure 15-13 shows, a logged-in visitor can also log
out directly from the breadcrumbs control. If the visitor is not logged in, the logout
link is replaced by a link to log_in.aspx.

To determine whether to display the logout link or the login link, the Render
method checks the Page.User.Identity.IsAuthenticated property. An authenti-
cated visitor gets the logout link, and an unauthenticated visitor gets the login link.

The controls presented to this point comprise all those that appear in every VB
Snippets Web page. A control does not have to appear in every page to be useful,
however. Let’s look now at a more specialized control.

Localizing Graphic Effects

In several VB Snippets Web pages, the Web designer has created graphic links or
buttons that change color when the cursor passes over them. When you use a
graphic for a link or a button, changing the color in this way signals the visitor that
the graphic is “live,” which improves the usability of your Web site. Features like
this help to distinguish good Web sites from the not so good.

The index.aspx page contains two such graphics, both of which serve as
buttons, returning control to the index.aspx page. Figure 15-14 contains a
screenshot of the index.aspx page scrolled down to make both buttons visible.

The MouseoverLink.vb custom control encapsulates the functionality that
makes these graphic buttons and links operate. Listing 15-8 contains the code for
this control, which exposes four properties. The Culture and ResourceManager prop-
erties are used for localization. The Image property identifies the name of the
graphic to be displayed, for example, “go” or “log_in”. The Link property identifies
the link associated with the graphic, if any. If a link is specified, the custom control
outputs HTML that links to that page when the visitor clicks the graphic. If no link
is specified, the custom control generates a button that posts back to the page
containing the graphic.

0279c15.fm Page 803 Thursday, June 13, 2002 5:20 AM

Chapter 15

804

Listing 15-8. The MouseoverLink.vb Custom Control

Option Strict On

Imports System.Resources

Imports System.ComponentModel

Imports System.Web.UI

<DefaultProperty("Text"), _

ToolboxData("<{0}:MouseoverLink runat=server></{0}:MouseoverLink>")> _

Figure 15-14. The Go button on the index.aspx page changes color to signal that it is
a “live” graphic.

0279c15.fm Page 804 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

805805

Public Class MouseoverLink

 Inherits System.Web.UI.WebControls.WebControl

 Implements IPostBackEventHandler

 Private _sImage As String = "go"

 Private _sLink As String = String.Empty

 Private _sCulture As String = String.Empty

 Private _WasClicked As Boolean = False

 Private _rm As ResourceManager

 <Bindable(True), Category("Appearance"), DefaultValue("")> _

 Property Image() As String

 Get

 Return _sImage

 End Get

 Set(ByVal Value As String)

 _sImage = Value

 End Set

 End Property

 Property Link() As String

 Get

 Return _sLink

 End Get

 Set(ByVal Value As String)

 _sLink = Value

 End Set

 End Property

 <Bindable(True), Category("Appearance"), DefaultValue("")> _

 Property Culture() As String

 Get

 Return _sCulture

 End Get

 Set(ByVal Value As String)

 _sCulture = Left(Value, 2)

 If _sCulture = "en" Then _sCulture = String.Empty

 End Set

 End Property

0279c15.fm Page 805 Thursday, June 13, 2002 5:20 AM

Chapter 15

806

 <Bindable(False)> _

 Property ResourceManager() As ResourceManager

 Get

 Return _rm

 End Get

 Set(ByVal Value As ResourceManager)

 _rm = Value

 End Set

 End Property

 ReadOnly Property WasClicked() As Boolean

 Get

 Return _WasClicked

 End Get

 End Property

 Protected Overrides Sub Render(ByVal output As System.Web.UI.HtmlTextWriter)

 If _rm Is Nothing Then

 Throw New Exception("C15_Ctl_Lib-MouseoverButton: " _

 & "No resource manager provided.")

 End If

 'Develop localized image paths

 Dim sImgSrc As String = "images/" & _sImage & "_btn"

 If Not _sCulture = String.Empty Then

 sImgSrc &= "_" & _sCulture

 End If

 Dim sOver As String = "changeImage('" & _sImage & "','','" _

 & sImgSrc & "_over.gif',1)"

 sImgSrc &= ".gif"

 'Move to left margin

 output.WriteLine()

 'Add scripted mouseover events

 output.AddAttribute("onmouseover", sOver)

 output.AddAttribute("onmouseout", "restoreImage()")

 If _sLink = String.Empty Then

 'Link button: add postback event reference

 Dim sScript As String = "javascript:" _

 & Page.GetPostBackEventReference(Me, _sImage)

 output.AddAttribute(HtmlTextWriterAttribute.Href, sScript)

0279c15.fm Page 806 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

807807

 Else

 'Link to page: add link reference

 output.AddAttribute(HtmlTextWriterAttribute.Href, _sLink)

 End If

 'Render beginning anchor tag

 output.RenderBeginTag(HtmlTextWriterTag.A)

 'Render image for button

 output.AddAttribute(HtmlTextWriterAttribute.Id, _sImage)

 output.AddAttribute(HtmlTextWriterAttribute.Name, _sImage)

 output.AddAttribute(HtmlTextWriterAttribute.Border, "0")

 output.AddAttribute(HtmlTextWriterAttribute.Src, sImgSrc)

 output.AddAttribute(HtmlTextWriterAttribute.Alt, _rm.GetString(_sImage))

 output.AddAttribute(HtmlTextWriterAttribute.Title,

 _rm.GetString(_sImage))

 'Provide width and height of image to improve browser performance

 Dim sGif As New System.Text.StringBuilder(sImgSrc)

 sImgSrc = sGif.Replace("/", "\").ToString

 Dim bmp As System.Drawing.Bitmap _

 = New System.Drawing.Bitmap(Page.Server.MapPath(sImgSrc))

 output.AddAttribute(HtmlTextWriterAttribute.Width, CStr(bmp.Width))

 output.AddAttribute(HtmlTextWriterAttribute.Height, CStr(bmp.Height))

 'Render img element within anchor element

 output.RenderBeginTag(HtmlTextWriterTag.Img)

 output.RenderEndTag()

 'Render end tag for anchor element

 output.RenderEndTag()

 output.WriteLine()

 End Sub

 Public Sub RaisePostBackEvent(ByVal eventArgument As String) _

 Implements System.Web.UI.IPostBackEventHandler.RaisePostBackEvent

 Debug.Assert(CType(eventArgument, String) = _sImage, _

 "MouseoverLink got incorrect postback")

 _WasClicked = True

 End Sub

End Class

This control makes it easy to add graphical buttons and links to a Web page
but, as implemented, it does not stand alone. It requires the support of a JavaScript—

0279c15.fm Page 807 Thursday, June 13, 2002 5:20 AM

Chapter 15

808

rollover.js—provided by the Web designer. The script is identified to the Web page
in the HTML head section like this:

<script src="rollover.js" type=text/javascript></script>

It is also important to preload the graphics that will display when the visitor
moves the cursor over the original graphic. If you don’t do this, a delay occurs
while the browser retrieves the missing graphic. In the index.aspx page, the code to
preload the mouseover graphics looks like this:

<script language="javascript">

 <!--

 preloadSwapImages('images/log_in_btn_over.gif','images/go_btn_over.gif')

 //-->

</script>

Finally, the custom control depends upon the naming convention used by the
designer for the graphics. For the originally displayed Go button, the image is named
go_btn.gif. The mouseover version of the same graphic is named go_btn_over.gif.
Thus, the control can construct the filenames for both graphics from the name
supplied in the Image property.

The localized versions of the buttons extend the same convention. For example,
the French version of the Go button is named go_btn_fr.gif, and its mouseover
counterpart is named go_btn_fr_over.gif. The Culture property enables the custom
control to construct the required filenames for its localized buttons. Figure 15-15
shows the Spanish versions of the graphical buttons on the index.aspx page. Here,
the color of the log_in button shows that visitor has moved the cursor over it.

One additional point is worth mentioning about this custom control: it is
important for performance at the client to specify the height and width attributes
of each graphic in its img tag. Of course, the graphics for different languages vary in
size, so the custom control determines the height and width of each graphic pro-
grammatically and includes those values in the HTML it renders.

0279c15.fm Page 808 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

809809

Figure 15-15. The MouseoverLink.vb custom control displays localized graphics.

Personalizing Web Pages

We mentioned at the beginning of this chapter that the VB Snippets case study
uses registration for personalization rather than for security. Therefore, VB Snippets
does not force the visitors to receive a login page before gaining access to the site.
To support this approach, the Web.config file contains the following entries:

0279c15.fm Page 809 Thursday, June 13, 2002 5:20 AM

Chapter 15

810

<authentication mode="Forms" />

<authorization>

 <allow users="*" /> <!-- Allow all users -->

</authorization>

This combination of entries provides for free access to the Web site, but it
makes forms authentication available for registered visitors. The CVisitor class,
which we present shortly, contains the code that authenticates the user. As we saw
earlier, the breadcrumbs custom control tests the Page.User.Identity.IsAuthenti-
cated property to determine whether to output a logout or login link. Let’s look at
an example that makes more use of the Page.User.Identity class.

Getting the User Name from an Identity Object

The index.aspx page occupies the top of the page hierarchy, so it does not use the
breadcrumbs custom control. The u_crumb_welcome.ascx user control appears
in place of the breadcrumbs control. If the visitor is logged in, the control greets
the visitor by name and offers a logout link. If the visitor is not logged in, the
control displays a generic greeting and no link. (The visitor can log in directly from
the index.aspx page if he or she chooses.)

Listing 15-9 contains the ASCX code for this user control. As with all the VB
Snippets controls, the text strings are localized.

Listing 15-9. The u_crumb_welcome.ascx User Control

<%@ Control Language="vb" AutoEventWireup="false"

 Codebehind="u_crumb_welcome.ascx.vb"

 Inherits="Chapter_15.u_crumb_welcome"

 TargetSchema="http://schemas.microsoft.com/intellisense/ie5" %>

<p class="lfloatpad">

 <img border="0" src="images/arrow.gif"

 width="6" height="10">

 <%=rm.GetString("Welcome")%>,

 ,

 <%=rm.GetString("toVbSnippets")%>

</p>

<p class="rfloatpad" id="pLogout" runat="server">

 <a href="index.aspx?action=logout"

 class="logout"><%=rm.GetString("LogOut")%>

</p>

0279c15.fm Page 810 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

811811

Notice how the logout link works. If the visitor clicks it, the control links back
to index.aspx with a query string of action=logout. In fact, the logout link in the
breadcrumbs custom control works the same way. The index.aspx page includes
the following code at the top of its Page_Load procedure:

Dim sAction As String = Request.Params("action")

If sAction = "logout" Then

 Dim oVisitor As CVisitor = New CVisitor(Me)

 oVisitor.LogOut()

 Response.Redirect("index.aspx")

End If

The Logout method of the CVisitor class, which we present shortly, updates the
database with current information and relinquishes the visitor’s authentication.
The Response.Redirect method redisplays the index.aspx page in its generic form.

The code in Listing 15-10 shows how the user control in the index.aspx page
personalizes its message. If the Page.User.Identity.IsAuthenticated property is
True, the control displays the Page.User.Identity.Name property value. This property
returns the Username value supplied when the visitor is authenticated.

Listing 15-10. The u_crumb_welcome.ascx.vb User Control Code

Option Strict On

Imports System.Resources

Public MustInherit Class u_crumb_welcome

 Inherits System.Web.UI.UserControl

 Protected WithEvents pLogout As System.Web.UI.HtmlControls.HtmlGenericControl

 Protected WithEvents txtName As System.Web.UI.HtmlControls.HtmlGenericControl

 [Designer generated code omitted]

 Protected rm As ResourceManager

 Private Sub Page_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 'Put user code to initialize the page here

 rm = New ResourceManager("Chapter_15.strings", GetType(index).Assembly)

 If Page.User.Identity.IsAuthenticated Then

 'Get name and display logout option

 txtName.InnerText = Page.User.Identity.Name

 Me.pLogout.Visible = True

0279c15.fm Page 811 Thursday, June 13, 2002 5:20 AM

Chapter 15

812

 Else

 'Visitor is not logged in

 txtName.InnerText = rm.GetString("friend")

 Me.pLogout.Visible = False

 End If

 End Sub

End Class

The control uses the Visible property to control whether ASP.NET generates
the HTML for the logout link. If the visitor is logged in, the link is displayed; if not,
the link is suppressed.

The authentication used to control the personalization of VB Snippets occurs
in the CVisitor class. We present that class now.

Storing Visitor Information in Persistent Cookies

The CVisitor class contains information about a visitor to VB Snippets. Whenever
a page instantiates the class, the class constructor checks to see whether the visitor
has already been authenticated. Because the Login method creates a persistent
authentication cookie, a visitor may already be logged in whenever he or she
enters the Web site.

If the class constructor determines that the visitor is already authenticated,
the code looks for an additional persistent cookie, VbCodeDb, that contains more
information about the visitor. The VbCodeDb cookie contains the email address of
the visitor, which acts as a key to the visitor’s information stored in the VbUser
database. It also tracks the date of the visitor’s last use of VB Snippets. The code
updates this date information at most once per day. VB Snippets uses the LastVisit
property to determine which code snippets have been added since the last visit
(and thus should be marked with the word new). The constructor initializes the
readonly Email, Username, and LastVisit properties with values from the persistent
cookies.

The VbUser database contains information about the visitor’s keyword prefer-
ences. The CVisitor class constructor accesses these preferences via the CVbUser
class and initializes the CVisitor.Keywords property accordingly. Listing 15-11 contains
the code for the CVisitor class.

0279c15.fm Page 812 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

813813

Listing 15-11. The CVisitor Class

Option Strict On

Imports System.Web.Security

Public Class CVisitor

 Private _Page As Page

 Private _dtmLastVisit As Date = #12/31/9999#

 Private _sEmail As String = String.Empty

 Private _sUsername As String = String.Empty

 Private _sKeywords As String = String.Empty

 Sub New(ByVal Page As Page)

 _Page = Page

 If _Page.User.Identity.IsAuthenticated Then

 Dim oCookieIn As HttpCookie = _Page.Request.Cookies("VbCodeDb")

 If Not oCookieIn Is Nothing Then

 _sEmail = oCookieIn.Values("Email")

 _dtmLastVisit = CDate(oCookieIn.Values("LastVisit"))

 'If new visit date, update cookie

 If oCookieIn.Values("CurrentVisit") _

 <> Today.ToShortDateString Then

 Dim oCookieOut As HttpCookie _

 = _Page.Response.Cookies("VbCodeDb")

 If Not oCookieOut Is Nothing Then

 oCookieOut.Expires = Today.AddYears(1)

 oCookieOut.Values("Email") = oCookieIn.Values("Email")

 oCookieOut.Values("CurrentVisit") _

 = Today.ToShortDateString

 oCookieOut.Values("LastVisit") _

 = oCookieIn.Values("CurrentVisit")

 _dtmLastVisit = CDate(oCookieOut.Values("LastVisit"))

 End If

 End If

 'Get preference info from database

 Dim oVbUser As CVbUser = Me.VisitorRow

 _sKeywords = oVbUser.Keywords

 oVbUser.Dispose()

0279c15.fm Page 813 Thursday, June 13, 2002 5:20 AM

Chapter 15

814

 Else

 Throw New Exception("Chapter_15-CVisitor: " _

 & "Missing VbCodeDb Cookie")

 End If

 End If

 End Sub

 ReadOnly Property Email() As String

 Get

 Return _sEmail

 End Get

 End Property

 ReadOnly Property Username() As String

 Get

 Return _sUsername

 End Get

 End Property

 ReadOnly Property LastVisit() As Date

 Get

 Return _dtmLastVisit

 End Get

 End Property

 Property Keywords() As String

 Get

 Return _sKeywords

 End Get

 Set(ByVal Value As String)

 _sKeywords = Value

 Dim oVbUser As CVbUser = Me.VisitorRow

 oVbUser.Keywords = _sKeywords

 oVbUser.Update()

 oVbUser.Dispose()

 End Set

 End Property

0279c15.fm Page 814 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

815815

 Function LogIn(ByVal Email As String, _

 ByVal Password As String) As Boolean

 Dim oVbUser As New CVbUser()

 Dim EmailFound As Boolean = oVbUser.Find(Email)

 If EmailFound AndAlso oVbUser.Password = Password Then

 'Visitor is registered, get info

 _dtmLastVisit = oVbUser.LastVisit

 _sUsername = oVbUser.Username

 _sKeywords = oVbUser.Keywords

 oVbUser.Dispose()

 'Prepare persistent cookie

 Dim oCookie As HttpCookie = New HttpCookie("VbCodeDb")

 oCookie.Expires = DateTime.MaxValue

 oCookie.Values("Email") = Email

 oCookie.Values("LastVisit") = _dtmLastVisit.ToShortDateString

 oCookie.Values("CurrentVisit") = Today.ToShortDateString

 'Add cookies to response

 _Page.Response.Cookies.Add(oCookie)

 FormsAuthentication.SetAuthCookie(_sUsername, True)

 Return True

 Else

 'Couldn't find email-password combination

 Return False

 End If

 End Function

 Sub LogOut()

 'Update database with last visit date

 Dim oVbUser As CVbUser = Me.VisitorRow

 oVbUser.LastVisit = Today

 oVbUser.Update()

 oVbUser.Dispose()

 'Remove persistent cookies

 _Page.Request.Cookies.Remove("VbCodeDb")

 FormsAuthentication.SignOut()

 _sUsername = String.Empty

 _dtmLastVisit = #12/31/9999#

 End Sub

0279c15.fm Page 815 Thursday, June 13, 2002 5:20 AM

Chapter 15

816

 Private Function VisitorRow() As CVbUser

 Dim oVbUser As New CVbUser()

 Dim EmailFound As Boolean = oVbUser.Find(_sEmail)

 If EmailFound Then

 Return oVbUser

 Else

 Throw New Exception("Chapter_15-CVisitor: " _

 & "Missing VbUserDb Row")

 End If

 End Function

End Class

The CVisitor.Login method validates the visitor’s registration, prepares the
VbCodeDb cookie, and adds both the VbCodeDb cookie and the FormsAuthentication
cookie to the response.

The CVisitor.Logout method updates the VbUser database, removes the

VbCodeDb cookie, and calls the FormsAuthentication.Signout method to rescind the
visitor’s authentication. We have already presented the code, which is triggered by
clicking a logout link and which calls the Logout method. The index.aspx page calls
the Login method from the Page_PreRender event handler as follows:

If Me.smaccLogin.WasClicked Then

 'Visitor wants to log in

 Dim IsLoggedIn As Boolean = oVisitor.LogIn(_

 Me.txtEmail.Value, Me.txtPassword.Value)

 If IsLoggedIn Then

 'Return with authenticated credentials

 Response.Redirect("index.aspx")

 Else

 'Provide error message

 Me.spanErrMsg.InnerHtml = "
" _

 & "Email or password not found."

 End If

End If

This code executes when the PreRender event fires to make sure that the
MouseoverLink.vb custom control has had the opportunity to set its WasClicked
property. If the login succeeds, the index.aspx redisplays in its personalized
format. If not, the code adds a red error message.

0279c15.fm Page 816 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

817817

Reading Database Information Efficiently

Although they are very useful for updating databases from Web applications, the
disconnected datasets of ADO aren’t needed by applications like VB Snippets that
only display database information. (The VB Snippets database is maintained in a
separate application.) To make such an application scale as well as possible, use
stored procedures to define the rows needed from the database and use data
readers to retrieve those rows for display.

You don’t have to be a database expert to create stored procedures: Visual
Studio .NET can do the work for you. Figure 15-16 shows the creation of the BrowseAll
stored procedure using Visual Studio .NET’s Query Builder. If you create and con-
figure a data adapter to use a newly created stored procedure, the Query Builder
does all the work. The Advanced settings allow you to stop the creation of stored
procedures other than the Select procedure that you really need. You can discard
the data adapter, and the stored procedures remain in the database for your use.

Figure 15-16. The Visual Studio .NET Query Builder creates a stored procedure with
an inner join of four tables.

0279c15.fm Page 817 Thursday, June 13, 2002 5:20 AM

Chapter 15

818

When you use a stored procedure, the database does not need to parse the
SQL in a command to determine what rows to return. This naturally increases effi-
ciency and improves the scalability of your Web application. When you execute a
stored procedure, you need to know the parameters it requires, and your code
must set the values correctly. The BrowseAll stored procedure created in Figure 15-16,
for example, needs a parameter containing a valid culture.

To use a data reader, your code needs a data connection and a data command.
The ExecuteReader method of the data command creates a data reader that
retrieves database rows with great efficiency. One caveat: a data reader supports
forward-only reading of the rows selected. Once you move past a row, you cannot
get back to it without reading the database again. Make sure that your code takes
this fact into account.

The CVbCode class uses stored procedures and data readers to access the infor-
mation presented by VB Snippets. Let’s take a look at that class.

Creating a Database Access Class

The CVbCode and CVbUser classes contain a lot of code, much of it repetitive. In this
section, we show how to create a database access class for Web applications like
VB Snippets, trusting that you can follow the same patterns in your own applications.
You can, of course, download and examine both classes in detail.

The code in Listing 15-12 shows the CVbCode class in its very first version. This
class returns the information needed to display a particular code snippet in the
code_example page. This initial version of the class illustrates the common pattern
used to access data using stored procedures and data readers.

Listing 15-12. The First Incarnation of the CVbCode Class

Option Strict On

Imports System.Data

Imports System.Data.Common

Imports System.Data.SqlClient

Imports System.Text

Public Class CVbCode

 Protected WithEvents SqlConnCode As SqlConnection

 Protected WithEvents SqlReadKeywords As SqlCommand

 Protected WithEvents SqlReadCode As SqlCommand

0279c15.fm Page 818 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

819819

 Public Structure Example

 Public Description As String

 Public WhenAdded As String

 Public Code As String

 Public KeywordLinks As String

 End Structure

 Public Function CodeExample(ByVal ID As Integer, _

 Optional ByVal Culture As String = "en") As Example

 SqlReadCode.Parameters("@ID").Value = ID

 SqlReadCode.Parameters("@Culture").Value = Culture

 Try

 'Get requested code example from the database

 Dim RequestedExample As Example

 SqlConnCode.Open()

 Dim rdrEx As SqlDataReader = SqlReadCode.ExecuteReader()

 rdrEx.Read()

 RequestedExample.Description = rdrEx.GetString(0)

 RequestedExample.WhenAdded = rdrEx.GetDateTime(1).ToShortDateString

 'Format code example for Web display

 Dim sExample As New StringBuilder(rdrEx.GetString(2))

 sExample.Replace(" ", " ")

 sExample.Replace("<", "<")

 sExample.Replace(">", ">")

 sExample.Replace(ControlChars.CrLf, "
")

 RequestedExample.Code = sExample.ToString

 rdrEx.Close()

 RequestedExample.KeywordLinks = KeywordLinks(ID)

 SqlConnCode.Close()

 Return RequestedExample

 Catch ex As Exception

 Throw New Exception("Chapter_15-CVbCode: " & ex.Message)

 End Try

 End Function

0279c15.fm Page 819 Thursday, June 13, 2002 5:20 AM

Chapter 15

820

 Private Function KeywordLinks(ByVal ID As Integer) As String

 SqlReadKeywords.Parameters("@ID").Value = ID

 Dim rdrKey As SqlDataReader = SqlReadKeywords.ExecuteReader

 Dim sKeyword As String

 Do While rdrKey.Read

 If Not sKeyword = String.Empty Then sKeyword &= ", "

 sKeyword &= "<a href='code_browse_" & rdrKey.GetString(0).ToLower _

 & ".aspx'>" & rdrKey.GetString(0) & ""

 Loop

 rdrKey.Close()

 Return sKeyword

 End Function

 Sub New()

 InitializeConnection()

 InitializeKeywordsCommand()

 InitializeCodeCommand()

 End Sub

 Private Sub InitializeCodeCommand()

 Me.SqlReadCode = New SqlCommand()

 With Me.SqlReadCode

 .CommandText = "[SelectExampleAndDescription]"

 .CommandType = System.Data.CommandType.StoredProcedure

 .Connection = Me.SqlConnCode

 .Parameters.Add(New System.Data.SqlClient.SqlParameter(_

 "@RETURN_VALUE", System.Data.SqlDbType.Int, 4, _

 System.Data.ParameterDirection.ReturnValue, False, _

 CType(0, Byte), CType(0, Byte), "", _

 System.Data.DataRowVersion.Current, Nothing))

 .Parameters.Add(New System.Data.SqlClient.SqlParameter(_

 "@ID", System.Data.SqlDbType.Int, 4, "ID"))

 .Parameters.Add(New System.Data.SqlClient.SqlParameter(_

 "@Culture", System.Data.SqlDbType.VarChar, 5, "Culture"))

 End With

 End Sub

 Private Sub InitializeKeywordsCommand()

 Me.SqlReadKeywords = New SqlCommand()

 With Me.SqlReadKeywords

 .CommandText = "[SelectKeywordsForExample]"

 .CommandType = CommandType.StoredProcedure

 .Connection = Me.SqlConnCode

0279c15.fm Page 820 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

821821

 .Parameters.Add(New System.Data.SqlClient.SqlParameter(_

 "@RETURN_VALUE", System.Data.SqlDbType.Int, 4, _

 System.Data.ParameterDirection.ReturnValue, False, _

 CType(0, Byte), CType(0, Byte), "", _

 System.Data.DataRowVersion.Current, Nothing))

 .Parameters.Add(New System.Data.SqlClient.SqlParameter(_

 "@ID", System.Data.SqlDbType.Int, 4, "ID"))

 End With

 End Sub

 Private Sub InitializeConnection()

 Me.SqlConnCode = New SqlConnection()

 Dim sConnUser As String _

 = ConfigurationSettings.AppSettings("VbUserDbConn")

 If Not sConnUser = String.Empty Then

 'Get connection string from Web.config

 Me.SqlConnCode.ConnectionString = sConnUser

 Else

 'Use development connection

 Me.SqlConnCode.ConnectionString _

 = "data source=THOR;" _

 & "initial catalog=VbCode;" _

 & "persist security info=False;" _

 & "user id=sa;" _

 & "workstation id=THOR;" _

 & "packet size=4096"

 End If

 End Sub

 Sub Dispose()

 Me.SqlConnCode.Dispose()

 Me.SqlConnCode = Nothing

 Me.SqlReadCode.Dispose()

 Me.SqlReadCode = Nothing

 Me.SqlReadKeywords.Dispose()

 Me.SqlReadKeywords = Nothing

 Me.dt = Nothing

 End Sub

0279c15.fm Page 821 Thursday, June 13, 2002 5:20 AM

Chapter 15

822

 Protected Overrides Sub Finalize()

 If Not Me.SqlConnCode Is Nothing Then Dispose()

 MyBase.Finalize()

 End Sub

End Class

The CVbCode class constructor initializes the database connection and two
SqlCommand objects. The SqlReadCode command uses the SelectExampleAndDescription
stored procedure to retrieve rows from the VbCode database. Your code must
supply values for the @ID and @Culture parameters, and the stored procedure
returns the localized description of the code, the date the code was added to the
database, and the code itself.

The SqlReadKeywords command uses the SelectKeywordsForExample stored pro-
cedure. Your code must supply a value for the @ID parameter, and the stored
procedure returns all the keywords for that ID.

The CodeExample method returns a structure containing the snippet requested

by ID and Culture. The structure includes the localized Description, the WhenAdded
date (in string format), the actual Code, and a KeywordLinks string that contains the
HTML for a list of links to the browse pages of every keyword associated with the
snippet. Look back at Figure 15-13 to see how the code_example page displays
the information received. The parameters received by the CodeExample method
determine the values set for the parameters passed to the stored procedure by the
command, as follows:

SqlReadCode.Parameters("@ID").Value = ID

SqlReadCode.Parameters("@Culture").Value = Culture

Note that the CodeExample method edits the code snippet to allow the browser
to display the code correctly. Because the browser condenses whitespace into a
single space, the method substitutes nonbreaking spaces. To cause the browser to
display HTML in the code examples as text, the method substitutes entity refer-
ences for the angle brackets used to form HTML tags. Finally, the CodeExample
method substitutes br tags for the carriage return and linefeed combination (CrLf)
that marks the end of each code line. Unlike strings, which are immutable in .NET,
the StringBuilder class provides for the direct modification of string information.
Therefore, the CodeExample method uses StringBuilder class methods to prepare
the code for browser display.

0279c15.fm Page 822 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

823823

Creating the BrowseAll Function

To conclude our presentation of database access using stored procedures and data
readers, we present a method that returns data that may be bound directly to a
data grid, data list, or repeater. The BrowseAll function, as incorporated into the
CVbCode class, uses the BrowseAll stored procedure (see Figure 15-16) to retrieve a
large number of rows from the VbCode database. To support the BrowseAll function,
we modified the class constructor to execute the InitializeBrowseAllCommand and
InitializeDataTable procedures. Listing 15-13 contains additions to the CVbCode
class to support the BrowseAll function.

Listing 15-13. The BrowseAll Function and Supporting Code Added to the CVbCode
Class

Protected WithEvents SqlBrowseAll As SqlCommand

Private rm As ResourceManager

Private dt As DataTable

Public Function BrowseAll(Optional ByVal NewExampleDate As Date = #12/31/9999#, _

Optional ByVal Culture As String = "en") As ICollection

 dt.Clear()

 Dim dr As DataRow

 Dim dtmNewExample As DateTime = NewExampleDate

 Dim dtmCurrExample As DateTime

 'Set parameter values

 SqlBrowseAll.Parameters("@Culture").Value = Left(Culture, 2)

 'Get examples

 SqlConnCode.Open()

 Dim rdrAll As SqlDataReader = SqlBrowseAll.ExecuteReader()

NOTE Despite all this editing, you can copy these snippets directly from the
browser and paste them into Visual Studio .NET or into Notepad. The clipboard
holds the copied data in both HTML and text formats, and the paste operation
supplies plain text when you paste into Code view or into Notepad. The code
will be correct, with the edits having been removed. If you paste into HTML view,
on the other hand, you get the HTML version with the edits included.

0279c15.fm Page 823 Thursday, June 13, 2002 5:20 AM

Chapter 15

824

 Do While rdrAll.Read

 dr = dt.NewRow

 dr("Keyword") = rdrAll.GetString(0)

 dr("ID") = rdrAll.GetInt32(1)

 dr("Link") = "code_example_" & rdrAll.GetInt32(1).ToString & ".aspx"

 dtmCurrExample = rdrAll.GetDateTime(2)

 dr("Date") = dtmCurrExample.ToShortDateString

 If dtmCurrExample > dtmNewExample Then

 dr("New") = rm.GetString("new")

 End If

 dr("Description") = rdrAll.GetString(3)

 dt.Rows.Add(dr)

 Loop

 rdrAll.Close()

 'Get keywords for each example

 Dim i As Integer

 For i = 0 To dt.Rows.Count - 1

 dt.Rows(i)("Keywords") = KeywordLinks(CInt(dt.Rows(i)("ID")))

 Next

 SqlConnCode.Close()

 Dim dv As New DataView(dt)

 Return dv

End Function

Private Sub InitializeBrowseAllCommand()

 Me.SqlBrowseAll = New SqlCommand()

 With Me.SqlBrowseAll

 .CommandText = "[BrowseAll]"

 .CommandType = System.Data.CommandType.StoredProcedure

 .Connection = Me.SqlConnCode

 .Parameters.Add(New System.Data.SqlClient.SqlParameter(_

 "@RETURN_VALUE", System.Data.SqlDbType.Int, 4, _

 System.Data.ParameterDirection.ReturnValue, False, _

 CType(0, Byte), CType(0, Byte), "", _

 System.Data.DataRowVersion.Current, Nothing))

 .Parameters.Add(New System.Data.SqlClient.SqlParameter(_

 "@Culture", System.Data.SqlDbType.VarChar, 5, "Culture"))

 End With

End Sub

0279c15.fm Page 824 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

825825

Private Sub InitializeDataTable()

 dt = New DataTable()

 dt.Columns.Add("ID", GetType(Integer))

 dt.Columns.Add("Link", GetType(String))

 dt.Columns.Add("Date", GetType(String))

 dt.Columns.Add("New", GetType(String))

 dt.Columns.Add("Description", GetType(String))

 dt.Columns.Add("Keyword", GetType(String))

 dt.Columns.Add("Keywords", GetType(String))

End Sub

The BrowseAll stored procedure takes an @Culture parameter and returns
localized descriptions for all the code snippets in the database. In fact, this stored
procedure returns more rows than the database has snippets because a separate
row is generated for each keyword-example combination. A code snippet that’s
associated with three keywords, for example, appears in three separate rows returned
by the stored procedure. Figure 15-17 shows the first page of the BrowseAll display.
The code_browse_all Web page uses the paging features of the DataGrid control to
reduce each page to a manageable size.

You may have noticed that the links for the code_example page actually look like
this: code_example_13.aspx. Similarly, the links for the code_browse page look
like this: code_browse_arraylist.aspx. The explanation for this fact brings us to the
last topic of this chapter, and of this book.

Inviting Spiders, Crawlers, and Surfers

When you develop a Web site for public use, your objective is to attract visitors to
your site. In many cases, the profitability of a Web site depends upon the number
of visits it gets. Many surfers use search engines to locate Web pages of interest,
and these folks are likely to miss your Web site entirely if the search engines don’t
list it prominently. Here we show a couple of techniques that you can use to
encourage search engines to list your site prominently.

0279c15.fm Page 825 Thursday, June 13, 2002 5:20 AM

Chapter 15

826

Creating Web Pages on the Fly

What does this have to do with the names of your site’s Web pages? Consider how
the spiders and Web crawlers used by many search engines work: they happily
follow link after link after link, recording information about the Web site’s pages as
they go. However, they most definitely do not make up values to enter into text-
boxes to determine how a Web site responds, and they don’t register themselves to
view data that is unavailable to the general public. In fact, some search engines

immediately stop crawling a site when they encounter a “?” in a URL’s query string

Figure 15-17. The code_browse_all page provides a means for a visitor to browse through
all of the code snippets in a structured way.

0279c15.fm Page 826 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

827827

to avoid the possibility of getting caught in a “spider trap”—a bit of dynamic code
that requests information that the spider can’t supply.

To help the spiders along, you want to make sure that every page in your Web
site has its own URL, even if the page does not exist until you create it. Furthermore,
you want to make sure that your Web site has several ways to link to every acces-
sible page. By creating multiple links to the content-rich pages, you increase the
odds that search engines will follow the links and find the most relevant pages of
your Web site. In the VB Snippets case study, for example, many links exist to each
code snippet.

So that explains why every code example and every browse page in VB
Snippets has a different URL. The code in Listing 15-14 shows how VB Snippets
analyzes the URLs and routes incoming requests to the code that creates those
pages on the fly. The code that accomplishes this resides in the Global.asax file and
executes before an ASPX file has been designated to respond to an incoming
request. The Application_BeginRequest event handler contains the required code.

Listing 15-14. The Application_BeginRequest Event Handler Routes Incoming
Requests for Code Examples and Browse Pages.

Sub Application_BeginRequest(ByVal sender As Object, ByVal e As EventArgs)

 ' Fires at the beginning of each request

 Const sCodeReq As String = "code_example_"

 Const sBrowse As String = "code_browse_"

 Dim sPath As String = Request.Path.ToLower

 Dim iLength As Integer = 0

 Dim iFirstDigit As Integer = sPath.IndexOf(sCodeReq)

 If iFirstDigit > -1 Then

 'Code example page name detected

 iFirstDigit += sCodeReq.Length

 iLength = sPath.IndexOf(".") - iFirstDigit

 If iLength > 0 Then

 'Code example request: convert request to parameters and create page

 Try

 'Find language directory, if any

 Dim asLang() As String = {"/es/", "/fr/", "/pt/", "/de/"}

 Try

 asLang _

 = ConfigurationSettings.AppSettings("UrlLangs").Split(","c)

 Catch

 'Retain default

 End Try

0279c15.fm Page 827 Thursday, June 13, 2002 5:20 AM

Chapter 15

828

 Dim sLang As String = String.Empty

 Dim i, iSlash As Integer

 For i = 0 To UBound(asLang)

 iSlash = sPath.IndexOf(asLang(i))

 If iSlash > -1 Then

 sLang = asLang(i).Substring(1, asLang(i).Length - 2)

 Exit For

 End If

 Next

 Dim iExampleID As Integer _

 = CType(sPath.Substring(iFirstDigit, iLength), Integer)

 Dim strNewPath As String = Request.ApplicationPath _

 & "/code_example.aspx?exampleid=" & iExampleID.ToString

 If sLang <> String.Empty Then

 strNewPath &= "&language=" & sLang

 End If

 Me.Context.RewritePath(strNewPath)

 Catch

 'On conversion error, do not rewrite path

 End Try

 Exit Sub

 End If

 End If

 Dim iFirstChar As Integer = sPath.IndexOf(sBrowse)

 If iFirstChar > -1 Then

 'Browse page detected

 iFirstChar += sBrowse.Length

 iLength = sPath.IndexOf(".") - iFirstChar

 Dim sKeyword As String = sPath.Substring(iFirstChar, iLength)

 If sKeyword <> "all" Then

 'Specific keyword browse, so create page

 Me.Context.RewritePath(Request.ApplicationPath _

 & "/code_browse.aspx?keyword=" & sKeyword)

 End If

 End If

End Sub

In a nutshell, the code in Listing 15-14 scans the URLs of incoming requests to
determine if the URL includes “code_example_” or “code_browse_”. If not, the
code does nothing and the requested page—index.aspx, for example—responds
as usual. If a match is found, however, the event handler goes to work.

0279c15.fm Page 828 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

829829

When the URL is for a particular code example, the event handler finds the
example number, which corresponds to its ID in the VbCode database, and inserts
into a query string like this:

?exampleid=13

The event handler uses the Context.RewritePath method to route the incoming
request to code_example.aspx, with the query string appended. The code_example
page uses the query string to determine what example has been requested and
builds the response on the fly. When ASP.NET returns the response to the visitor,
however, the URL in the browser’s address line reflects the original request, not the
page that actually created the response. To all appearances, the visitor requested a
Web page with an independent existence, and the Web site returned that page.

If the request is for a code example with a non-English description, the URL
includes the culture code, like this:

.../es/code_example_13.aspx

When the URL contains a recognized culture code, the event handler extracts it
and sends it to code_example.aspx in a separate query string.

The code_browse processing works similarly. In this case, however, the event
handler extracts the keyword from the URL and passes it to code_browse via a
query string.

The Request object that’s available to your Application_BeginRender code pro-
vides access to specific information about the visitor’s browser. If your Web site
provides different versions of Web pages for different browsers, your code can use
the Context.RewritePath method to route an incoming request to the page specifi-
cally designed to handle it. From the visitor’s viewpoint, the Web application
simply returns the page requested, regardless of the ASPX file that actually responded
to the request.

Adding Meta-Keywords Dynamically

To improve your Web site’s ranking by search engines, you should carefully choose
the keywords you provide in the head section of the HTML for each Web page. Your
goal should be to include every word that might be entered by a potential visitor
who is searching for sites like yours. When you build Web pages on the fly, you
should consider adding pertinent meta-keywords on the fly. The code_browse
page uses the u_keywords.ascx user control for precisely this purpose. The
u_keywords.ascx file contain a single literal control, like this:

<asp:literal id="litKeywords" runat="server"></asp:literal>

0279c15.fm Page 829 Thursday, June 13, 2002 5:20 AM

Chapter 15

830

The code behind the user control contains a static list of keywords that are
applicable to every page in the site, and it exposes an Append property used to
specify the word or words to add to the list. When the control is rendered, the static
list and the appended word or words are included in a meta tag in the head section
of the HTML. Listing 15-15 contains the code for this user control

Listing 15-15. The u_keywords.ascx.vb User Control Code

Public MustInherit Class u_keywords

 Inherits System.Web.UI.UserControl

 Protected WithEvents litKeywords As System.Web.UI.WebControls.Literal

 [Designer generated code omitted]

 Private Sub Page_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 'Put user code to initialize the page here

 Me.litKeywords.Text = sMeta & _sAppend & sQuote & ">"

 End Sub

 Const sQuote As String = """"

 Const sMeta As String = "<meta name=" & sQuote & "keywords" _

 & sQuote & " content=" & sQuote _

 & "code, sample code, example code, Web code, Web database, " _

 & "Web database code, Visual Basic, Visual Basic .NET, " _

 & "Visual Studio, Visual Studio .NET"

 Private _sAppend As String

 Property Append() As String

 Get

 Return _sAppend

 End Get

 Set(ByVal Value As String)

 _sAppend = Value

 End Set

 End Property

End Class

To support the dynamic addition of keywords to the meta tag, the
code_browse.aspx file contains this statement in the head section of its HTML:

<sma:keywords id="smaKey" runat="server"></sma:keywords>

0279c15.fm Page 830 Thursday, June 13, 2002 5:20 AM

Creating a Web Site

831831

The following code in the Page_Load procedure appends the current browse key-
word to the static keywords rendered in the meta tag:

Dim ouKey As u_keywords

ouKey = CType(Me.FindControl("smaKey"), u_keywords)

ouKey.Append = ", " & sKeyword

This technique can also be used to modify other HTML elements that are not
displayed in the browser window. As a matter of fact, the code_browse page mod-
ifies the title element on the fly, by incorporating the browse keyword into the title
that’s displayed at the top of the browser.

Recap

This chapter covered the development of a high-quality Web site based on a
professionally created Web design. We discussed the benefits of factoring a Web
application into reusable controls and classes and provided examples of each. The
code examples in this chapter showed how to output localized HTML for navi-
gation menus, breadcrumb links, and graphical buttons.

This chapter also demonstrated how to use persistent cookies to personalize a
Web site. It concluded by showing how to create Web pages on the fly that look and
behave like static pages.

This chapter concludes our book about programming the Web using Visual
Basic .NET. We hope, someday soon, to visit your applications on the Web. Happy
programming!

0279c15.fm Page 831 Thursday, June 13, 2002 5:20 AM

